윙배너
윙배너

고효율 탠덤 페로브스카이트 발광소자 개발

차세대 유기발광소자(OLED) 장점 모두 갖춘 소자

고효율 탠덤 페로브스카이트 발광소자 개발 - 산업종합저널 소재
하이브리드 탠덤 페로브스카이트 발광다이오드의 개념도 및 소자 효율

유기 분자·무기 원소, 중심 금속 그리고 할로겐 원소로 구성되고 이온 결정 구조를 가지는 금속 할라이드 페로브스카이트 발광체는 현재 디스플레이 소재로 사용되는 양자점 (Quantum dot) 혹은 유기 발광소재와 비교해 제작 비용이 낮다.

색상 조절도 쉽고, 색순도가 뛰어나 차세대 디스플레이 소재로써 큰 관심을 받고 있다. 특히, 금속 할라이드 페로브스카이트 발광체는 현존하는 초고선명 텔레비전 (Ultra-High-Definition Television; UHD-TV) 색 표준인 Rec. 2020을 만족하는 고색순도 발광 소재로 차세대 디스플레이 산업을 주도 할 것으로 예상된다.

페로브스카이트 발광소자가 빠른 속도로 발전하고 있으나, 현재 수준의 페로브스카이트 발광소자는 상용화된 유기발광소자(OLED)에 비해 소자효율이 낮아 이를 더 개선할 필요가 있다. 단일 발광층으로 발광하는 단일소자는 향상시킬 수 있는 발광 효율에 한계가 있다.

현재 페로브스카이트 발광소자의 발광 효율은 28.9% 까지 도달한 상황이며 추가적으로 발광효율을 향상시킬 수 있는 전략이 필요한 상황이다.

이에 대한 해결방안 중 하나는 탠덤(Tandem) 구조의 발광 소자를 제작하는 것이다. 탠덤 소자 구조는 두 개 이상의 단일 구조 소자를 적층한 소자구조다. 다수의 발광층에서 동시에 발광을 유도함으로써 소자 효율을 크게 향상시킬 수 있다.

하지만 다층 박막의 적층이 요구되는 탠덤 소자구조를 용액 공정의 페로브스카이트 발광소자로 구현하기 어려움이 있다. 특히 발광 스펙트럼과 전류-휘도 응답이 서로 다른 두 가지의 발광 소자를 단순히 적층시키는 것만으로는 탠덤 소자가 높은 색순도 (즉, 좁은 스펙트럼)와 높은 발광 효율을 동시에 갖도록 구현하는 원리적으로 불가능에 가까웠다.

탠덤 소자 제작 시에는 ▲각 발광층으로의 전하 운반자(charge carrier)의 주입 제어 ▲광추출효율과 미소공진효과(microcavity)를 고려한 박막 구성 등 소자구조를 세밀하게 제어해야 한다. 이와 같은 어려움으로 인해 현재까지 페로브스카이트 기반 탠덤 발광 소자의 연구는 아직 보고되지 않았다.

과학기술정보통신부는 서울대학교 이태우 교수 연구팀이 금속 할라이드 페로브스카이트와 유기발광 소재를 결합한 고효율 장수명 하이브리드 탠덤 발광 소자 개발에 성공했다고 밝혔다.

과기정통부 기초연구사업(리더연구) 지원으로 수행한 이번 연구 성과는 국제학술지 '네이처 나노테크놀로지(Nature Nanotechnology)'에 1월 16일(현지시간) 게재됐다.

연구팀은 페로브스카이트 발광소자와 유기발광소자를 병합한 하이브리드 탠덤 페로브스카이트 발광소자를 최초로 제작해 기존 연구 한계의 극복 방안을 제시했다. 연구팀은 용액공정으로 하단의 페로브스카이트 단일소자를 제작하고, 이어서 증착공정을 통해 상단의 유기 단일소자를 제작함으로써 두 개의 단일소자가 적층된 구조의 하이브리드 탠덤 페로브스카이트 발광소자를 제작했다.

두 단일 발광소자는 전하생성층(charge generation layer) 및 전하수송층(charge transport layer)을 통해 전기적으로 결합돼 각 발광층으로 균형있는 전하 운반자 주입을 유도했다. 하단 페로브스카이트 발광층의 경우, 상단 유기 발광층의 빛을 모두 투과시킬 수 있도록 얇고 (~30 nm) 투명한 페로브스카이트 나노입자 발광체를 사용해 빛의 재흡수를 억제함으로써 광추출효율을 극대화했다. 이와 동시에 소자 광학구조미소공진효과를 고려해 고효율 및 고색순도를 동시에 구현할 수 있는 최적의 소자구조를 최초로 발견했다.

특히 하이브리드 탠덤 페로브스카이트 소자 내에서 페로브스카이트 발광소자와 유기발광소자는 상이한 스펙트럼으로 발광하는데, 미소공진효과는 스펙트럼에 민감하게 영향 받기 때문에 이를 고려한 세밀한 소자구조 설정이 요구된다.

연구진은 실제 소자 제작과 더불어 광학시뮬레이션을 통해 고효율 및 고색순도를 동시에 구현하기 위한 최적의 소자구조의 조건들을 확인했으며 이를 통해 확인된 최적의 소자구조를 h-Tandem Valley 라고 명명했다. 이를 기반으로 연구진은 최초로 외부 양자효율 37%, 반치폭 27.3nm의 고효율 및 고색순도 하이브리드 탠덤 페로브스카이트 발광소자를 보고했다. 대면적 및 유연 발광 소자의 제작에도 성공했다. 하이브리드 텐덤 소자의 구동 수명은 휘도 100nit 기준 환산 5천596 시간으로 페로브스카이트 나노입자 단일 소자의 구동 수명인 1.8 시간에 비해 3천108배 향상돼 디스플레이로의 상용화에 크게 가까워졌다.

연구성과/기대효과
연구진이 제안한 하이브리드 탠덤구조는 기존 페로브스카이트 발광 다이오드의 효율 한계를 극복했다. 그 뿐 아니라, 색순도, 응답속도 및 구동 수명도 크게 향상시켜 높은 성능이 요구되는 증강 및 가상현실(AR/VR) 디바이스 및 차세대 디스플레이로의 페로브스카이트 발광소재 상용화에 크게 기여할 것으로 기대된다.

이태우 교수는 교원창업으로 시작한 에스엔디스플레이 주식회사와 협력해 75inch(인치) 페로브스카이트 디스플레이까지 시제품을 선보였으며, 상용화에 박차를 가하고 있다. 또한 미국 라스베이거스에서 열린 CES 2024 (국제전자제품박람회) 에서도 11 인치 태블릿과 32 인치 TV를 전시해 OLED, QLED 보다 더 좋은 색품질, 더 높은 밝기, 낮은 전력소모, AR/VR 적용을 위해 중요한 2um 이하 미세패턴 가능성으로 큰 호응을 이끌어냈다. 이번 성과를 이미 상용화된 기존 자발광 OLED 공정과 결합한다면 소형부터 대형 디스플레이까지 모두 자발광 소자로 상용화하는 것이 예상보다 더 빠른 속도로 가능할 것으로 보인다.


0 / 1000


많이 본 뉴스

준이차원 페로브스카이트 태양전지 소재 개발

가볍고 유연할 뿐만 아니라 성능 면에서도 기존의 상용화된 실리콘 기반의 태양전지와 비슷한 수준의 단위소자 효율을 보이고 있는 페로브스카이트 태양전지는 차세대 태양전지로 급부상하고 있다. 하지만 페로브스카이트 태양전지의 상용화를 위해선 고효율뿐만 아니라 장기안정성을 확보하는 것

차세대 신소재 ‘맥신’, 표면처리 기술로 상용화 앞당기나

한국교통대학교(이하 교통대) 환경에너지 연구실이 '2023 소재·부품·장비 중소기업 대전(CoMPEX KOREA 2023, 이하 컴펙스 코리아)'에서 차세대 신소재 ‘맥신(MXene)’ 연구 현황을 소개했다. 맥신은 전기 전도도, 전자파 차폐 특성이 우수한 2차원 나노 소재다. 2차 전지의 전도성 물질을 대체

스마트안전관리 선보인 포스코이앤씨, “중대재해만큼은 막는다”

포스코이앤씨(이하 포스코)가 14일 일산 킨텍스에서 진행 중인 '대한민국 안전산업 박람회(K-SAFETY EXPO, 이하 전시회)'에서 크레인 안전 솔루션, 8D BIM 등 스마트 안전관리 기술을 선보였다. 크레인 안전 솔루션은 크레인 작업의 사고를 예방하는 기술이다. 건설 현장 크레인은 100m 이상에서

고효율 탠덤 페로브스카이트 발광소자 개발

유기 분자·무기 원소, 중심 금속 그리고 할로겐 원소로 구성되고 이온 결정 구조를 가지는 금속 할라이드 페로브스카이트 발광체는 현재 디스플레이 소재로 사용되는 양자점 (Quantum dot) 혹은 유기 발광소재와 비교해 제작 비용이 낮다. 색상 조절도 쉽고, 색순도가 뛰어나 차세대 디스플레이

반도체 미세공정 한계 돌파할 비정질 질화붕소 박막 합성 성공

정부가 과학기술분야 경쟁력 강화를 위해 꺼내든 카드는 초격차 전략이다. 특히 반도체는 한국을 대표하는 기간산업이자 미래 먹거리인 만큼 지난 2021년 5월 2030 세계 최고 반도체 공급망 구축을 목표로 수립한 ‘K 반도체 전략’이 한층 더 진화됐다. 세계적으로 패권경쟁이 치열한 반도체






산업전시회 일정


미리가보는 전시회